Rewrite Weakly space-confined all-inorganic perovskites for light-emitting diodes as a headline for a science magazine post, using no more than 7 words
Metal halide perovskites are promising materials for light-emitting diodes (LEDs)1,2,3,4. Spatially confining charge carriers using nanocrystal/quantum dots5,6,7,8,9, low-dimensional perovskites10,11,12,13 and ultrathin perovskite layers14 have all been used to improve the external quantum efficiency of perovskite LEDs (PeLEDs). However, most strongly space-confined perovskites suffer from severe Auger recombination, ion migration and thermal instability, resulting in limited […]

Metal halide perovskites are promising materials for light-emitting diodes (LEDs)1,2,3,4. Spatially confining charge carriers using nanocrystal/quantum dots5,6,7,8,9, low-dimensional perovskites10,11,12,13 and ultrathin perovskite layers14 have all been used to improve the external quantum efficiency of perovskite LEDs (PeLEDs). However, most strongly space-confined perovskites suffer from severe Auger recombination, ion migration and thermal instability, resulting in limited brightness and operational lifetime6,7,10,11,12,14,15,16,17. Here, we report an alternative strategy based on weakly space-confined, large-grained crystals of all-inorganic perovskite. Sacrificial additives, namely, hypophosphorous acid and ammonium chloride, were used to induce nucleation and crystallization of caesium lead bromide, resulting in monocrystal grains with minimized trap density and a high photoluminescence quantum yield. Benefiting from the high carrier mobility and suppressed Auger recombination, we obtained efficient PeLEDs with an external quantum efficiency reaching 22.0%, which remained above 20% at a high current density near 1,000 mA cm−2 and a brightness of over 1,167,000 cd m−2. Furthermore, benefiting from the suppressed ion migration and better thermal stability, the extrapolated half-lifetime of the weakly space-confined PeLEDs increased to 185,600 h under an initial luminance of 100 cd m−2 at room temperature. Our work is a new approach for designing efficient, bright and stable PeLEDs for real applications.
Peng, C., Yao, H., Ali, O. et al. Weakly space-confined all-inorganic perovskites for light-emitting diodes.
Nature (2025).
.adsslot_N7t9Hx4iWR{width:728px !important;height:90px !important;}
@media(max-width:1199px){ .adsslot_N7t9Hx4iWR{width:468px !important;height:60px !important;}
}
@media(max-width:767px){ .adsslot_N7t9Hx4iWR{width:320px !important;height:50px !important;}
}
ADVERTISEMENT
bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:
Subject of Research:
Article Title:
Article References:
Peng, C., Yao, H., Ali, O. et al. Weakly space-confined all-inorganic perovskites for light-emitting diodes.
Nature (2025). https://doi.org/10.1038/s41586-025-09137-1
Image Credits: AI Generated
DOI:
Keywords
Tags: all-inorganic perovskitesAuger recombination suppressionefficient PeLED designExternal Quantum Efficiencyhigh carrier mobilitylight-emitting diodeslong operational lifetimenanocrystal quantum dotsnucleation and crystallizationPhotoluminescence Quantum Yieldthermal stability in LEDsweakly space-confined materials
What's Your Reaction?






