Rewrite Probing phonon transport dynamics across an interface by electron microscopy as a headline for a science magazine post, using no more than 7 words

Understanding thermal transport mechanisms across material interfaces is crucial for advancing semiconductor technologies, particularly in miniaturized devices operating under extreme power densities1,2. Although the interface phonon-mediated processes are theoretically established3,4,5,6 as the dominant mechanism for interfacial thermal transport in semiconductors7, their nanoscale dynamics remain experimentally elusive owing to challenges in measuring the temperature and non-equilibrium […]

Jun 12, 2025 - 06:00
Rewrite Probing phonon transport dynamics across an interface by electron microscopy as a headline for a science magazine post, using no more than 7 words

Understanding thermal transport mechanisms across material interfaces is crucial for advancing semiconductor technologies, particularly in miniaturized devices operating under extreme power densities1,2. Although the interface phonon-mediated processes are theoretically established3,4,5,6 as the dominant mechanism for interfacial thermal transport in semiconductors7, their nanoscale dynamics remain experimentally elusive owing to challenges in measuring the temperature and non-equilibrium phonon distributions across the buried interface8,9,10,11. Here we overcome these limitations by using in situ vibrational electron energy-loss spectroscopy (EELS) in an electron microscope to nanoscale profile temperature gradients across the AlN–SiC interface during thermal transport and map its non-equilibrium phonon occupations at sub-nanometre resolution. We observe a sharp temperature drop within about 2 nm across the interface, enabling direct extraction of relative interfacial thermal resistance (ITR). During thermal transport, the mismatch of phonon modes’ thermal conductivity at the interface causes substantial non-equilibrium phonons nearby, making the populations of interface modes different under forward and reverse heat flow and also leading to marked changes in the modal temperature of AlN optical phonons within about 3 nm of the interface. These results reveal the phonon transport dynamics at the (sub-)nanoscale and establish the inelastic phonon scattering mechanism involved by interface modes, offering valuable insights into the engineering of thermal interfaces.

Liu, F., Mao, R., Liu, Z. et al. Probing phonon transport dynamics across an interface by electron microscopy.
Nature (2025).

.adsslot_E6N7CUDlnf{ width:728px !important; height:90px !important; }
@media (max-width:1199px) { .adsslot_E6N7CUDlnf{ width:468px !important; height:60px !important; } }
@media (max-width:767px) { .adsslot_E6N7CUDlnf{ width:320px !important; height:50px !important; } }

ADVERTISEMENT

bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:

Subject of Research:

Article Title:

Article References:

Liu, F., Mao, R., Liu, Z. et al. Probing phonon transport dynamics across an interface by electron microscopy.
Nature (2025). https://doi.org/10.1038/s41586-025-09108-6

Image Credits: AI Generated

DOI:

Keywords

Tags: advanced materials engineeringAlN-SiC interface propertieselectron microscopy techniquesinterfacial thermal resistancematerial interfacesnanoscale temperature profilingnon-equilibrium phonon distributionsphonon mode thermal conductivityphonon transport dynamicssemiconductor technologiesthermal transport mechanismsvibrational electron energy-loss spectroscopy

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow