Mount Sinai researchers find more than 4,700 gene clusters crucial for prognosis in 32 cancer types
New York, NY (November 13, 2023)—Researchers at the Mount Sinai Center for Transformative Disease Modeling have released a groundbreaking study identifying 4,749 key gene clusters, termed “prognostic modules,” that significantly influence the progression of 32 different types of cancer. The study, published in Genome Research, serves as a comprehensive resource and lays the foundation for […]
New York, NY (November 13, 2023)—Researchers at the Mount Sinai Center for Transformative Disease Modeling have released a groundbreaking study identifying 4,749 key gene clusters, termed “prognostic modules,” that significantly influence the progression of 32 different types of cancer. The study, published in Genome Research, serves as a comprehensive resource and lays the foundation for the development of next-generation cancer treatments and diagnostic markers.
Credit: Mount Sinai Health System
New York, NY (November 13, 2023)—Researchers at the Mount Sinai Center for Transformative Disease Modeling have released a groundbreaking study identifying 4,749 key gene clusters, termed “prognostic modules,” that significantly influence the progression of 32 different types of cancer. The study, published in Genome Research, serves as a comprehensive resource and lays the foundation for the development of next-generation cancer treatments and diagnostic markers.
Despite significant progress in cancer research, understanding the disease’s genetic intricacies remains challenging. Previous research often focused on isolated gene functions in specific cancer types.
“We aimed to fill this knowledge gap by providing a comprehensive analysis of gene-gene interactions across various forms of cancer,” said Bin Zhang, PhD, Willard T.C. Johnson Research Professor of Neurogenetics and Director of the Mount Sinai Center for Transformative Disease Modeling.
The team used a multi-omics approach, incorporating genomic, transcriptomic, and epigenomic data in their analysis. They employed advanced systems biology approaches to analyze more than 10,000 patient samples from The Cancer Genome Atlas (TCGA), one of the most comprehensive public cancer databases, and used rigorous network methods to identify and validate the gene clusters that have a significant impact on cancer prognosis.
“The implications of our findings are profound. We have identified 4,749 distinct co-regulated gene modules that play a pivotal role in cancer progression,” explained Dr. Zhang.
Peng Xu, PhD, Instructor of Genetics and Genomic Sciences and co-senior author, added: “Our study goes beyond merely identifying these modules. It also elucidates the multi-scale regulations that govern their functions.”
In simpler terms, the study has identified critical genes and their complex relationships that either halt or promote cancer progression. This new understanding opens the door for targeted research and development of future treatments and diagnostic methods for cancers.
While this study represents a significant step forward, it is not an immediate cure for cancer. However, it serves as a crucial foundation for developing targeted therapies that could lead to improved patient outcomes. “Our findings offer fertile ground for the next wave of cancer research and treatment strategies,” said Dr. Zhang.
The paper is titled “Multiscale network modeling reveals the gene regulatory landscape driving cancer prognosis in 32 cancer types.”
-####-
About the Icahn School of Medicine at Mount Sinai
The Icahn School of Medicine at Mount Sinai is internationally renowned for its outstanding research, educational, and clinical care programs. It is the sole academic partner for the eight- member hospitals* of the Mount Sinai Health System, one of the largest academic health systems in the United States, providing care to a large and diverse patient population.
Ranked 14th nationwide in National Institutes of Health (NIH) funding and among the 99th percentile in research dollars per investigator according to the Association of American Medical Colleges, Icahn Mount Sinai has a talented, productive, and successful faculty. More than 3,000 full-time scientists, educators, and clinicians work within and across 44 academic departments and 36 multidisciplinary institutes, a structure that facilitates tremendous collaboration and synergy. Our emphasis on translational research and therapeutics is evident in such diverse areas as genomics/big data, virology, neuroscience, cardiology, geriatrics, as well as gastrointestinal and liver diseases.
Icahn Mount Sinai offers highly competitive MD, PhD, and Master’s degree programs, with current enrollment of approximately 1,300 students. It has the largest graduate medical education program in the country, with more than 2,000 clinical residents and fellows training throughout the Health System. In addition, more than 550 postdoctoral research fellows are in training within the Health System.
A culture of innovation and discovery permeates every Icahn Mount Sinai program. Mount Sinai’s technology transfer office, one of the largest in the country, partners with faculty and trainees to pursue optimal commercialization of intellectual property to ensure that Mount Sinai discoveries and innovations translate into healthcare products and services that benefit the public.
Icahn Mount Sinai’s commitment to breakthrough science and clinical care is enhanced by academic affiliations that supplement and complement the School’s programs.
Through the Mount Sinai Innovation Partners (MSIP), the Health System facilitates the real-world application and commercialization of medical breakthroughs made at Mount Sinai. Additionally, MSIP develops research partnerships with industry leaders such as Merck & Co., AstraZeneca, Novo Nordisk, and others.
The Icahn School of Medicine at Mount Sinai is located in New York City on the border between the Upper East Side and East Harlem, and classroom teaching takes place on a campus facing Central Park. Icahn Mount Sinai’s location offers many opportunities to interact with and care for diverse communities. Learning extends well beyond the borders of our physical campus, to the eight hospitals of the Mount Sinai Health System, our academic affiliates, and globally.
——————————————————-
* Mount Sinai Health System member hospitals: The Mount Sinai Hospital; Mount Sinai Beth Israel; Mount Sinai Brooklyn; Mount Sinai Morningside; Mount Sinai Queens; Mount Sinai South Nassau; Mount Sinai West; and New York Eye and Ear Infirmary of Mount Sinai.
Journal
Genome Research
DOI
10.1101/gr.278063.123
Method of Research
Data/statistical analysis
Subject of Research
Not applicable
Article Title
Multiscale network modeling reveals the gene regulatory landscape driving cancer prognosis in 32 cancer types
What's Your Reaction?